1. Please enter the forecast date (YYYYMMDD):

SECTION 1 - OBSERVATIONS

2. Of the flash flood observational datasets, rank from 1-4 (with [1] being the best) how the NWS local storm reports, mPING citizen-scientist reports, USGS streamflow, and SHAVE targeted public observations provide the most useful information about the areal extent of flash flooding. If two datasets provided the same information, then assign them the same ranking.

 Local storm reports
 mPING citizen scientist reports
 USGS streamflow
 SHAVE targeted public observations

 Comments:

3. Of the flash flood observational datasets, rank from 1-4 (with [1] being the best) how the NWS local storm reports, mPING citizen-scientist reports, USGS streamflow, and SHAVE targeted public observations provide the most useful information about the magnitude of flash flooding. If two datasets provided the same information, then assign them the same ranking.

 Local storm reports
 mPING citizen scientist reports
 USGS streamflow
 SHAVE targeted public observations

 Comments:

4. Of the flash flood observational datasets, rank from 1-4 (with [1] being the best) how the NWS local storm reports, mPING citizen-scientist reports, USGS streamflow, and SHAVE targeted public observations provide the most useful information about the specific impacts of flash flooding. If two datasets provided the same information, then assign them the same ranking.

 Local storm reports
 mPING citizen scientist reports
 USGS streamflow
 SHAVE targeted public observations

 Comments:
SECTION 2 – FORECAST TOOLS

5. Of the experimental flash flood monitoring and short-term prediction tools, rank from 1-4 (with [1] being the best) how the MRMS QPE, QPE recurrence intervals, QPE-to-flash flood guidance ratios, and FLASH runoff recurrence intervals detect the event (consider hit/miss/false alarm). If two products provided the same information, then assign them the same ranking.

MRMS QPE
QPE recurrence interval
QPE-to-FFG ratio
FLASH runoff recurrence interval

Comments:

6. Of the experimental flash flood monitoring and short-term prediction tools, rank from 1-4 (with [1] being the best) how the MRMS QPE, QPE recurrence intervals, QPE-to-flash flood guidance ratios, and FLASH runoff recurrence intervals accurately represent the spatial extent of flooding. If two products provided the same information, then assign them the same ranking.

MRMS QPE
QPE recurrence interval
QPE-to-FFG ratio
FLASH runoff recurrence interval

Comments:

7. Of the experimental flash flood monitoring and short-term prediction tools, rank from 1-4 (with [1] being the best) how the MRMS QPE, QPE recurrence intervals, QPE-to-flash flood guidance ratios, and FLASH runoff recurrence intervals reveal the magnitude of flooding. If two products provided the same information, then assign them the same ranking.

MRMS QPE
QPE recurrence interval
QPE-to-FFG ratio
FLASH runoff recurrence interval

Comments:

8. How did the skill of the HRRR-forced FLASH compare to the QPE-forced FLASH? Consider detection, false alarming, spatial accuracy, and magnitude with the forecasts. Mark an [x] next to the appropriate category.

much worse
slightly worse
about same
slightly better
much better

Comments:

9. Assess how much lead time was provided from the HRRR-forced FLASH compared to the QPE-forced FLASH. Consider detection, false alarming, spatial accuracy, and magnitude with the forecasts. Mark a [-1] if the HRRR-based products led to a degradation compared to the QPE-based products.

Lead time (minutes):

Comments:

SECTION 3 – WATCHES & WARNINGS

10. Using all available flash flood observations, rate the spatial accuracy of the experimental flash flood watches vs. those that were issued operationally. Mark an [x] next to the appropriate category.

much worse
slightly worse
about same
slightly better
much better

Comments:

11. Using all flash flood observations and tools, rate the uncertainty estimate that was given to the issued flash flood watches. Recall that a low probability event should occur about 25% of the time, a medium about 50% of the time, and a high about 75% of the time. Mark an [x] next to the appropriate category.

too low
about right
too high

Comments:

12. Using all flash flood observations and tools, rate the magnitude (nuisance vs. major) that was given to the issued flash flood watches. Major floods can be validated with reports of homes/buildings with water in them, homes/buildings/vehicles swept away, rescues, evacuations, injuries, or fatalities. Mark an [x] next to the appropriate category.
too low
about right
too high

Comments:

13. Using all available flash flood observations, rate the spatial accuracy of the experimental flash flood warnings vs. those that were issued operationally. Mark an [x] next to the appropriate category.

much worse
slightly worse
about same
slightly better
much better

Comments:

14. Using all flash flood observations and tools, rate the uncertainty estimate that was given to the issued flash flood warnings. Recall that a low probability event should occur about 25% of the time, a medium about 50% of the time, and a high about 75% of the time. Mark an [x] next to the appropriate category.

too low
about right
too high

Comments:

15. Using all flash flood observations and tools, rate the magnitude (nuisance vs. major) that was given to the issued flash flood warnings. Major floods can be validated with reports of homes/buildings with water in them, homes/buildings/vehicles swept away, rescues, evacuations, injuries, or fatalities. Mark an [x] next to the appropriate category.

too low
about right
too high

Comments: